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1 Introduction

The AdS/CFT correspondence is a tool for studying field theories in the strong coupling

regime [1–3]. The range of physical phenomena to which it can be applied is constantly

increasing. One of the latest additions is the realization of spontaneous symmetry breaking

and the appearance of a superfluid (often described as superconducting) phase at low

temperature. A model with a charged scalar condensing in the background of a charged

AdS black hole has first been introduced in [4]. Shortly afterwards it was realized that a

charged scalar condenses as well when the black hole is neutral and it was shown explicitly

that the DC conductivity is infinite in the broken phase [5].

By now there is a large variety of holographic models of superfluid-

ity/superconductivity [6–21]. Specifically hydrodynamical behavior in these models has

been addressed before in [22, 23] where the speed of sound has been calculated from deriva-

tives of thermodynamic quantities. The hydrodynamic poles of retarded Green functions

have been studied in an analytical approximation for infinitesimal condensate in a p-wave

model in [24].

In this work we are interested in the hydrodynamics of the holographic superconductor

introduced in [5]. In general, hydrodynamic behavior is connected either to the presence

of a conserved charge, a spontaneously broken symmetry or a second order phase transi-

tion. As we will see in our model all three possibilities are realized. In holographic models

the hydrodynamic modes appear as quasinormal modes in the AdS black hole background

whose frequency vanishes in the zero momentum limit [25, 26]. Quasinormal modes play
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an important role in the physics of black holes and a very good review of their properties in

asymptotically flat black holes is [27]. In the asymptotically flat situation the quasinormal

modes are defined as solutions of linearized wave equations with purely infalling boundary

conditions on the horizon and outgoing ones at the boundary. In asymptotically AdS spaces

the situation is somewhat different. On the horizon one still imposes infalling boundary

conditions but on the conformal boundary of anti de Sitter space several possibilities of

choosing boundary conditions arise: Dirichlet or Neumann or Robin (mixed) ones. The

holographic interpretation fixes this degeneracy of boundary conditions by defining the

quasinormal modes as the poles of the holographic Green functions [28–30]. This of course

implies to know the holographic Green functions, which are computed using the prescrip-

tion given in [31]. In situations in which there are several fields whose linearized wave

equations form a coupled system of differential equations possibly subject to a constraint

due to a gauge symmetry the construction of the holographic Green functions is a bit

more complicated. We solve this problem in full generality and show that the quasinormal

modes defined are the zeroes of the determinant spanned by the values at the boundary of

a maximal set of linearly independent solutions to the field equations.

Having solved the problem of defining the holographic Green functions we concentrate

on finding the lowest quasinormal modes and in particular the ones representing the hy-

drodynamic behavior of the system. Hydrodynamic modes can be understood as massless

modes in the sense that limk→0 ω(k) = 0. Such modes arise in the presence of a conserved

charge. In this case a local charge distribution can not simply dissipate away but has to

spread slowly over the medium according to a diffusion process. Other situations in which

hydrodynamic modes appear are at a second order phase transition, characterized by the

appearance of a new massless mode and spontaneous breaking of a global symmetry where

a massless Goldstone boson appears. A discussion of hydrodynamics in systems with spon-

taneous breaking of global symmetries can be found in [32] and in the relativistic context

in [33].

We will consider the abelian gauge model of [5] without backreaction, i.e. assuming

that the metric is a simple AdS black hole with flat horizon topology. In [5] it has been

established that this model undergoes a second order phase transition towards forming a

condensate of the charged scalar field thus spontaneously breaking the U(1) gauge symme-

try. The conductivity in the broken phase has a delta function peak at zero frequency and

a gap typical of superconductors. We add here that although this model is referred to as

holographic superconductor it is more proper to speak of a holographic charged superfluid

as in [22] since the U(1) symmetry in the boundary field theory is global and there is no

clear holographic description of how to add gauge fields.

An important particularity of the model is the missing backreaction. Since the metric

fluctuations are set to zero this means that effectively there is no energy momentum tensor

in the field theory dual. In particular the generators of translations and rotations are

missing in the operator algebra. This does of course not mean that the model does not have

these symmetries, they are however not realized as inner automorphisms of the operator

algebra (they are still outer automorphisms). Besides the space time symmetries being

realized as outer automorphisms there is a direct consequence of this in what concerns the
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hydrodynamics of the model: all hydrodynamic modes related to them are missing. There

is no shear mode for the momentum diffusion and no sound mode for the energy transport.

The hydrodynamic modes we find in the model are therefore only due to the presence of

the U(1) symmetry and its spontaneous breakdown.

Hydrodynamics can be understood as an effective field theory defined by the continuity

equations of the conserved currents and so-called constitutive relations which encode the

dissipative behavior of the system. The constitutive relations tell us how fast a current is

built up due to gradients in the charge density or due to external fields. The constitutive

relations depend on transport coefficients such as viscosity or conductivity. Transport coef-

ficients can be divided into absorptive and reactive ones depending on whether they are odd

or even under time reversal [32]. A typical example for an absorptive transport coefficient

is the diffusion constant, an example for a reactive one is the speed of sound. Reactive

transport coefficients such as the speed of sound (the static susceptibility is another ex-

ample) can often be computed from purely thermodynamic considerations. This has been

done for the speed of second sound in this model in [22] and for a variant of fourth sound

in [23].1 As we have argued before, the hydrodynamic modes of energy and momentum

transport, shear and sound modes are missing. In the broken phase one expects however

the appearance of a hydrodynamic mode with approximately linear dispersion relation for

small momenta which represents the second sound present in superfluids. Indeed such a

mode is bound to appear for each spontaneously broken continuous symmetry [32]. Our

aim is to find the second sound mode directly as a pole in the holographic Green functions

in the broken phase and to read off the speed of sound from its dispersion relation. We

have found this mode numerically and our results for the speed of second sound agree (with

numerical uncertainties) with the results in [22].

Below the critical temperature one expects actually only a part of the medium to be

in the superfluid state whereas another part stays in the normal fluid phase. The fluid

is a two component fluid and naively one might expect that this is reflected in the pole

structure of the Green functions as the presence of the diffusive pole of the normal fluid

component. As we will see, the hydrodynamic character of this diffusive pole is lost however

below the critical temperature. We find a pole with purely imaginary frequencies obeying

a dispersion relation roughly of the form ω = −iγ − iDk2. The gap γ goes to zero at the

Tc such that at the critical temperature this mode goes over into the usual diffusive mode

of the normal fluid.

Our goal in the following is to establish the presence of the second sound pole in the

holographic superconductor model [5]. In section two we introduce the model and describe

its properties. We compute the condensate as a function of temperature. This is basically

a review of the results of [5] except the fact that we choose to work in the grand canonical

ensemble where we hold fixed the value of the chemical potential instead of the value of

the charge density.

1Note that in [22] the mode has been called second sound whereas in [23] it was argued that it should

be rather called fourth sound. There it has been argued that it is the fourth sound that survives the probe

limit. In any case working directly in the probe limit we only have one sound mode. For convenience we

will refer to it as second sound. Disentangling first, second or fourth sound would need to take into account

the backreaction which is beyond the scope of this paper.
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In section three we compute the quasinormal modes of the complex scalar field in

the unbroken phase. As expected we find that at the critical temperature a quasinormal

frequency crosses over into the upper half of the complex frequency plane. Since a pole

in the upper half plane is interpreted as an instability this is an indication that the scalar

field condenses. The quasinormal modes of gauge fields in the four dimensional AdS black

hole have been studied before [34]. In particular the longitudinal gauge field channel shows

a diffusion pole with diffusion constant D = 3/(4πT ). The holographic Green functions

for gauge fields are often calculated in a formalism that employs gauge invariant variables,

i.e. the electric field strengths. For reasons explained in section four we prefer however

to work directly with the gauge fields. The longitudinal components obey two coupled

differential equations subject to a constraint and we show in full generality how to compute

the holographic Green function in such a situation. The quasinormal mode condition boils

down to setting a determinant of field values at the boundary of AdS to zero. We find that

this determinant is proportional to the electric field strength exemplifying that the poles

of holographic Green functions are gauge invariant as expected on general grounds.

Section four is the core of our paper. Here we study the lowest modes of the quasinormal

mode spectrum in the superfluid phase. We find that the longitudinal gauge fields at non

zero momentum couple to real and imaginary part of the scalar field fluctuations, building

up a system of four coupled differential equations subject to one constraint. We solve this

system numerically and compute the quasinormal modes from our determinant condition.

We find hydrodynamic modes with approximately linear real part of the dispersion relation.

We compute the speed of second sound from it and find our results to be in good numerical

agreement with what was found in [22] from thermodynamic considerations. The second

sound pole has however also an imaginary part and we can fit the dispersion relation (for

small momenta) to ω = ±vsk− iΓsk
2 which allows us to read off the attenuation constant

Γs of second sound. We also find a purely imaginary mode with a dispersion relation of the

form ω = −iγ− iDk2 with D the diffusion constant. It is a sort of gapped diffusion mode.

The gap γ goes to zero for T → Tc. A simple two fluid model suggests that there is still a

normal fluid component and in it charges should diffuse in the usual way right below Tc.

Therefore we expect a diffusive pole to show up in the two-point function. The diffusive

behavior is modified however at long wavelength by the presence of the gap γ. This mode

is therefore not really a hydrodynamic mode.

We close this work with section five where we summarize and discuss our results.

2 The model

As in [5] we consider a four dimensional planar AdS black hole with line element

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2) . (2.1)

the blackening factor is f(r) = r2

L2 − M
r . This metric has a horizon at rH = M1/3L2/3, the

Hawking temperature is T = 3
4π

rH
L2 . In the following we will rescale coordinates according
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(2.2)

In the new dimensionless coordinates the metric takes the form (2.1) with M = 1 times

the overall AdS scale L2.

We take an abelian gauge model with a massive charged scalar field

L = −1

4
FµνF

µν −m2ΨΨ̄ − (∂µΨ − iAµΨ)(∂µΨ̄ + iAµΨ̄) (2.3)

and a tachyonic mass m2 = −2/L2 above the Breitenlohner-Friedmann bound. As in [5]

we ignore the backreaction of these fields onto the metric. We seek solutions for which the

time component of the gauge field vanishes at the horizon and takes a non-zero value µ

on the boundary. This value can be interpreted as the chemical potential. The boundary

condition on the horizon is usually justified by demanding that the gauge field has finite

norm there. Here this can be seen as follows: as in [22] we can chose a gauge that removes

the phase of the scalar field Ψ from the equations of motion. In this gauge the scalar field

current becomes Jµ = ψ2Aµ. Therefore the value of Aµ is directly related to a physical

quantity, the current, and it is a well defined physical condition to demand the current to

have finite norm at the horizon. This is achieved by taking the scalar field to be regular

and the gauge field to vanish at the horizon.

In addition to the gauge field the scalar field might be non trivial as well. In fact for

high chemical potential (low temperature) the scalar field needs to be switched on in order

to have a stable solution. In our study of the quasinormal modes in the next section we

will indeed see that a quasinormal mode crosses into the upper half plane at the critical

temperature. We denote the temporal component of the gauge field in the dimensionless

coordinates by Φ. The field equations for the background fields are

Ψ′′ +

(

f ′

f
+

2

ρ

)

Ψ′ +
Φ2

f2
Ψ +

2

L2f
Ψ = 0 , (2.4)

Φ′′ +
2

ρ
Φ′ − 2Ψ2

f
Φ = 0 . (2.5)

The equations can be solved numerically by integration from the horizon out to the bound-

ary. As we just argued for the current to have finite norm at the horizon we have to

chose Φ(1) = 0 and demand the scalar field to be regular at the horizon. These conditions

leave two integration constants undetermined. The behavior of the fields at the conformal

boundary is

Φ = µ̄− n̄

ρ
+O

(

1

ρ2

)

, (2.6)

Ψ =
ψ1

ρ
+
ψ2

ρ2
+O

(

1

ρ2

)

. (2.7)
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Figure 1. The condensates as function of the temperature in the two possible theories.

The value of the mass of the scalar field chosen allows to define two different theories due

to the fact that both terms in the expansion above are normalizable in AdS. The canonical

choice of what one considers to be the normalizable mode gives a theory in which ψ1

is interpreted as a coupling and ψ2 as the expectation value of an operator with mass

dimension two. On the other hand one might consider ψ2 as the coupling and ψ1 as the

expectation value of an operator of dimension one.

All our numerical calculations are done using the dimensionless coordinates. In order

to relate the asymptotic values (2.6), (2.7) to the physical quantities we note that

µ̄ =
3L

4πT
µ , (2.8)

n̄ =
9L

16π2T 2
n , (2.9)

ψ1 =
3

4πTL2
〈O1〉 , (2.10)

ψ2 =
9

16π2T 2L4
〈O2〉 , (2.11)

where µ is the chemical potential, n the charge density and 〈Oi〉 are the vacuum expectation

values of the operators sourced by the scalar field. From now on we will set L = 1 and

work in the grand canonical ensemble by fixing µ = 1. Different values for µ̄ can now be

interpreted as varying the temperature T . For high temperatures the scalar field is trivial

and the gauge field equation is solved by Φ = µ̄ − µ̄
ρ . Spontaneous symmetry breaking

means that an operator has a non trivial expectation value even when no source for the

operator is switched on. We therefore look for nontrivial solutions of the scalar field with

either ψ1 = 0 or ψ2 = 0. Numerically we find that a non-trivial scalar field is switched on

at µ̄ = 1.1204 corresponding to a critical temperature Tc = 0.213µ for the operator O1 and

at µ̄ = 4.0637 corresponding to a critical temperature of Tc = 0.0587µ for the operator O2.

We chose to plot the squares of the condensates as a function of reduced temperature. It

makes the linear behavior for temperatures just below the critical one manifest,

〈Oi〉2 ∝
(

1 − T

Tc

)

. (2.12)
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Since we want to compute the holographic two point functions we will have to expand

the action to second order in field fluctuations around the background. We divide the fields

into background plus fluctuations in the following way

Ψ = ψ(ρ) + σ(ρ, t, x) + iη(ρ, t, x) , (2.13)

Aµ = Am(ρ) + aµ(ρ, t, x) . (2.14)

The gauge transformations act only on the fluctuations

δaµ = ∂µλ , (2.15)

δσ = −λη , (2.16)

δη = λσ + λψ . (2.17)

The action expanded out to second order is S = S(0) + S(1) + S(2)

S(0) =

∫ √−g
(

−1

4
FµνFµν +

2

L2
ψ2 − (∂µψ)(∂µψ) −AµAµψ2

)

, (2.18)

S(1) =

∫ √−g
(

− 1

2
Fµνfµν +

4

L

2

ψσ − 2∂µψ∂
µσ − 2∂ψAµη

−2A2ψσ + 2Aµ∂
µη − 2Aµa

µψ2

)

,

S(2) =

∫ √−g
(

−1

4
fµνf

µν − (∂σ)2 − (∂η)2 −A2σ2 −A2η2 +
2

L

2

σ2 +
2

L

2

η2 − 2∂µψa
µη

−2Aµaµψσ − 2∂µσAµη + 2Aµσ∂µη + 2∂µηa
µψ − a2ψ2

)

.

Up to the equations of motion these can be written as boundary terms

S
(1)
B =

∫

B

√−g (gρρFρµaµ − 2gρρ∂ρψσ + 2Aρψη) ,

S
(2)
B = −

∫

B

√
−ggρρ

(

1

2
gνλfρνaλ + η∂ρη + σ∂ρσ + aρψη

)

. (2.19)

Note that S(1) is not trivial since according to the holographic dictionary it has to encode

the non-vanishing expectation values of the field theory operators.

3 Quasinormal frequencies in the unbroken phase

We assume now that the scalar field Ψ has vanishing background value and take the field

to depend on t, x, ρ. Frequency ω and momentum k in the dimensionless coordinates are

related to the physical ones ωph, kph as

ω =
3ωph
4πT

, k =
3kph
4πT

. (3.1)

– 7 –
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The equations of motion in the unbroken phase are

0 = Ψ′′ +

(

f ′

f
+

2

ρ

)

Ψ′ +

(

(Φ + ω)2

f2
+

2

f
− k2

fρ2

)

Ψ ,

0 = a′′t +
2

ρ
a′t −

k2

ρ2
at −

ωk

fρ2
ax ,

0 = a′′x +
f ′

f
a′x +

ω2

f2
ax +

ωk

fρ2
at ,

0 =
ω

f
a′t +

k

ρ2
a′x . (3.2)

The equation of motion for the complex conjugate scalar Ψ̄ can be obtained by changing

the sign of the gauge field background Φ in (3.2).

3.1 Green functions

In order to calculate the quasinormal frequencies we impose ingoing boundary conditions

at the horizon. Since the coefficients of the differential equations (3.2) are known analyt-

ically and are such that they are of Fuchsian type we can use the Frobenius method to

approximate the solutions at the horizon and at the boundary by series expansions. As is

well-known the holographic Green functions are proportional to the ratio of the connection

coefficients. More precisely we demand

ΨH = (ρ− 1)−iω/3(1 +O(ρ− 1)) , (3.3)

on the horizon and write the local solution at the AdS boundary as

ΨB =
A

ρ
+
B

ρ2
+ O

(

1

ρ3

)

. (3.4)

In the theory with the dimension two operator we take A as the coefficient of the non-

normalizable mode and B as the coefficient of the normalizable mode. Writing the local

solution on the horizon as a linear combination of normalizable and non-normalizable modes

on the boundary fixes the connection coefficient A and B. We have written the boundary

action as a functional of real and imaginary part of the scalar field. We will rewrite the

boundary action now in terms of the complex scalar Ψ and its conjugate. In addition we

introduce a local boundary counterterm to regularize the action.

SBΨ =

∫
[

−1

2
fρ2(Ψ̄Ψ′ + ΨΨ̄′) − ρ3Ψ̄Ψ

]

ρ=Λ

. (3.5)

This allows to compute the Green functions GŌO(q) = 〈Ō(−q)O(q)〉 and GOŌ(q) =

〈O(−q)Ō(q)〉 fulfilling GOŌ(−q) = GŌO(q), with q being the four momentum (ω, k). We

write Ψ(q, ρ) = Ψ0(q)fq(ρ), where we interpret Ψ0(q) as the source that inserts the op-

erator O(q) in the dual field theory. We introduce a cutoff and normalize the profile

function fq to 1/Λ at the cutoff. In terms of an arbitrary solution the normalized one is

– 8 –
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fk(ρ) = Ψk(ρ)/(ΛΨ(Λ)) where Ψk(ρ) has the boundary expansion (3.4). The boundary

action is now

SB = −1

2

∫

[

Ψ0(−q)(ρ2ff−qf̄
′
q + ρ3fqf̄q)Ψ̄0(q) + Ψ̄0(−q)(ρ2f f̄−qf

′
q + ρ3f̄−qfq)Ψ0(q)

]

ρ=Λ

=

∫

Ψ0(−q)FΨΨ̄(Λ)Ψ̄0(q) + Ψ̄0(−q)FΨ̄Ψ(Λ)Ψ0(q) . (3.6)

According to the holographic dictionary the renormalized retarded Green functions are

given by the limit limΛ→∞−2F(Λ):

GŌ2O2
=
B

A
, GO2Ō2

=
B̄

Ā
. (3.7)

We denote the connection coefficients for the complex conjugate scalar as Ā, B̄.2 Accord-

ing to (3.2) they can be obtained by switching the sign of the chemical potential in the

expressions for A,B.

The theory with the operator of dimension one can be obtained through a Legendre

transform. We note that the expectation value of the dimension two operator is 〈O2〉 =

− ρ2(ρΨ(ρ))′
∣

∣

ρ=Λ
, whereas the source is given by ΛΨ(Λ). We therefore add the following

terms to the boundary action

SB → SB +

∫

d4k
[

ρ3(Ψ̄(ρΨ(ρ))′ + Ψ(ρΨ̄(ρ))′
]∣

∣

ρ=Λ
. (3.8)

Now we can evaluate the Green functions as before, the only difference being the normaliza-

tion of the profile function fk(ρ) = Ψk(ρ)/[ΛΨ′(Λ) + Ψ(Λ)]. This normalization takes care

that the term of order 1/ρ2 in the boundary expansion couples with unit strength to the

source Ψ0(q). We find finally for the Green functions of the Legendre transformed theory

GO1Ō1
=
A

B
, GŌ1O1

=
Ā

B̄
, (3.9)

as expected. The quasinormal modes in the scalar sector are given by the zeroes of the

connection coefficients A and Ā in the theory with operator of dimension two and by

the zeroes of B and B̄ in the theory with the dimension one operator. In terms of the

unnormalized solutions to the field equations we can write the Green functions as

GŌ2O2
= − lim

Λ→∞

(

Λ2 Ψ′
q(Λ)

Ψq(Λ)
+ Λ

)

, (3.10)

GO1Ō1
= lim

Λ→∞

Ψq(Λ)

Λ(ΛΨ′
q(Λ) + Ψq(Λ))

. (3.11)

3.2 Quasinormal modes from determinants

Before presenting the results for the quasinormal modes of the scalar field we would like to

outline a method of how to calculate the holographic Green functions for the gauge fields

without using gauge invariant variables such as the electric field strength E = −i(kat+ωax).
2Note that the infalling boundary condition for the conjugate scalar is Ψ̄ ∼ (ρ − 1)−iω/3.
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The complicated structure of the gauge symmetry in the broken phase makes it rather

difficult to express the boundary action in terms of gauge invariant field combinations. As

a warm up for the problem of how to calculate the holographic Green functions in this

situation we will consider how we can calculate them in the unbroken phase directly in

terms of the gauge fields. We necessarily have to solve a system of coupled differential

equations whose solutions are restricted by a constraint.

The correct boundary conditions for the gauge fields on the horizon are

at ∝ (ρ− 1)1−iω/3(a0
t + . . . ) , (3.12)

ax ∝ (ρ− 1)−iω/3(a0
x + . . . ) . (3.13)

The two coefficients a0
x and a0

t are not independent but related by the constraint. At this

point we have fixed the incoming wave boundary conditions and there seems to be now a

unique solution to the field equations. We would expect however two linearly independent

solutions with infalling boundary conditions on the horizon. The constraint reduces this

to only one solution. The problem is now that in order to compute the Green function

for the charge density and longitudinal current component separately we need solutions

that asymptote to (at, ax) = (1, 0) and (at, ax) = (0, 1) respectively. This is of course not

possible with only one available solution at the horizon. Because of the gauge symmetry

the gauge field system (3.2) allows for an algebraic solution

at = −ωλ , (3.14)

at = kλ , (3.15)

with λ′ = 0, i.e. λ being independent of ρ. This is of course nothing but a gauge transfor-

mation of the trivial solution. Remember that even after fixing the radial gauge aρ = 0,

gauge transformations with gauge parameters independent of ρ are still possible. These

gauge transformations appear as algebraic solutions to the field equations. We also stress

that the infalling boundary conditions really have to be imposed only on physical fields,

i.e. the electric field strength. Having therefore an arbitrary non trivial gauge field solution

corresponding to an electric field with infalling boundary conditions we can add to it the

gauge mode (3.14).

We can use this to construct a basis of solutions that allows the calculation of the

holographic Green functions. Let us now assume that there is a solution that takes the

values (at, ax) = (1, 0) at the boundary. We will call this solution from now on αti for

i ∈ t, x. Analogously we define the solution αxi . According to the holographic dictionary

the solution αti couples to the boundary value limρ→∞ at(q, ρ) = At(q), i.e. the source of

the field theory operator Jt (the time component of the conserved current Jµ). In parallel

αxi couples to the boundary value Ax(q). A generic solution of the gauge field equations

can now be written in terms of the boundary fields as

ai(q, ρ) = Ax(q)α
x
i (ρ) + At(q)α

t
i(ρ) . (3.16)
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Using this expansion the boundary action can be written as

SB =
1

2

∫

B
Ai(−q)

[(

ρ2αit(−q, ρ)
d

dρ
(αjt (q, ρ)) − f(ρ)αix(−q, ρ)

d

dρ
(αjx(q, ρ))

)]

ρ=Λ

Aj(q) ,

(3.17)

where again we have introduced a cutoff at ρ = Λ. From this it follows that the holographic

Green functions are given by

2F ij(ρ) = ρ2αit(−k, ρ)
d

dρ
(αjt (k, ρ)) − f(ρ)αix(−k, ρ)

d

dρ
(αjx(k, ρ)) , (3.18)

in the limit

Gij = lim
Λ→∞

−2F ij(Λ) . (3.19)

Notice also that d
dρ [F ij(ρ) −F∗ji(ρ)] = 0 by the field equations.

Although there are no terms of the form a′tax in the boundary action this formalism

gives automatically expressions for the mixed Green functions Gtx and Gxt! But we still

have to construct the solutions αij(ρ). This can be done in the following way: suppose we

have an arbitrary solution (at(ρ), ax(ρ)) obeying the infalling boundary conditions (3.12).

We can add to this now an appropriate gauge mode, such that at the cutoff the solution

takes the form (1, 0) or (0, 1) in terms of at(Λ), ax(Λ). This is easily achieved by solving
(

ctt c
t
x

cxt c
x
x

)(

at(Λ) az(Λ)

−ωλ kλ

)

=

(

1 0

0 1

)

. (3.20)

The linear combinations formed with the coefficients cij give now new solutions

(αtt(ρ), α
t
x(ρ)) and (αxt (ρ), α

x
x(ρ))) obeying the correct boundary conditions on the AdS

boundary. Using the general expression for the Green function (3.19) we get explicitly in

terms of solutions obeying the infalling boundary conditions

Gtt = lim
Λ→∞

Λ2 ka′t(Λ)

kat(Λ) + ωax(Λ)
, (3.21)

Gtx = lim
Λ→∞

Λ2 ωa′t(Λ)

kat(Λ) + ωax(Λ)
, (3.22)

Gxt = − lim
Λ→∞

Λ2 ka′x(Λ)

kat(Λ) + ωax(Λ)
, (3.23)

Gxx = − lim
Λ→∞

Λ2 ωa′x(Λ)

kat(Λ) + ωax(Λ)
. (3.24)

Note that the denominator for all is given by kat(Λ) +ωax(Λ) which is up to an irrelevant

constant nothing but the gauge invariant electric field Ex. Therefore we see immediately

that the poles of these Green function are gauge invariant and coincide of course with the

poles of the Green function in the gauge invariant formalism where G ∝ E′

x
Ex

. Indeed using

the constraint on the boundary we find the well known expressions [35]

Gtt =
k2

k2 − ω2
lim

Λ→∞
Λ2E

′
x

Ex
, Gtx =

kω

k2 − ω2
lim

Λ→∞
Λ2E

′
x

Ex
,

Gxx =
ω2

k2 − ω2
lim

Λ→∞
Λ2E

′
x

Ex
. (3.25)
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On general grounds one expects indeed that the poles of the holographic Green functions

for gauge fields are gauge independent.

If we are interested only in the location of quasinormal frequencies we do not even have

to construct the holographic Green functions explicitly. From the linear system in (3.20)

we infer that the quasinormal frequencies coincide with the zeroes of the determinant of the

field values at the boundary. Indeed vanishing determinant means that there is a nontrivial

zero mode solution to (3.20) such that the boundary values of the fields are (0, 0) which in

turn means that the coefficient in the solution of the non-normalizable mode vanishes. The

determinant is λ(kat + ωax) and again given by the electric field strength. In fact these

remarks apply to systems of coupled differential equations in AdS black hole metric in

general: the quasinormal frequencies corresponding to the poles of the holographic Green

functions are the zeroes of the determinant of the field values on the boundary for a maximal

set of linearly independent solutions obeying infalling boundary conditions on the horizon.

The fact that the differential equations are coupled is the holographic manifestation of

mixing of operators under the RG flow. Therefore one has to specify at which scale one is

defining the operators. The scheme outlined above is dual to define the operators at the

cutoff Λ.

3.3 Hydrodynamic and higher QNMs

We have numerically computed the quasinormal frequencies for the fluctuations satisfying

the equations of motion (3.2) for both the O2 and the O1 theories. The quasinormal modes

of the scalar field correspond to zeroes of A in the theory of dimension two operator and

to zeroes of B in the dimension one operator theory, where A and B are the connection

coefficients of the boundary solution (3.4). Results for the lowest three poles of the scalar

field at zero momentum are shown in figure 2.

The poles with positive real part correspond to the quasinormal modes of the complex

scalar Ψ, while those with negative real part are the quasinormal modes of Ψ̄, obtained

by changing the overall sign of the gauge field background Φ. As the temperature is

decreased, the poles get closer to the real axis, until at the critical temperature Tc the

lowest mode crosses into the upper half of the complex frequency plane. It happens at

Tc = 4.0637 for the theory of dimension two operator and at Tc = 1.1204 in the case of

the dimension one operator theory. For T < Tc the mode would become tachyonic, i.e.

unstable. This instability indicates that the scalar field condenses and the system undergoes

a phase transition at T = Tc. At the critical point, the lowest scalar quasinormal mode

is a hydrodynamic mode in the sense that it is massless, limk→0ω(k) = 0. This mode is

identified with the Goldstone boson that appears after the spontaneous breaking of the

global U(1) symmetry and in the next section we will see that it evolves into the second

sound mode characteristic of superfluid models.

The quasinormal modes correspond to simple poles of the retarded Green function, so

close to the nth pole the Green function can be approximated by G(ω, k, T ) ∼ Rn(ω,k,T )
ω−ωn(k,T ) .

Knowing the connection coefficients we can compute the Green functions and therefore the

residue for each quasinormal mode as explained in [36, 37]. For the lowest quasinormal

mode at k = 0 and at the critical temperature, the residue takes the value R2(Tc) =

– 12 –
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Figure 2. Lowest scalar quasinormal frequencies as a function of the temperature and at momen-

tum k = 0, from T/Tc = ∞ to T/Tc = 0.81 in the O2 theory (right) and to T/Tc = 0.56 in the O1

theory (left). The dots correspond to the critical point T/Tc = 1 where the phase transition takes

place. Red, blue and green correspond to first, second and third mode respectively.

−2.545+0.825i in the O2 theory and R1(Tc) = 0.686− 0.348i in the O1 theory. In general,

one expects the residues of hydrodynamic modes that correspond to conserved quantities

of the system to vanish in the limit of zero momentum, since its susceptibility remains

constant. Consider for instance the diffusion mode associated to conserved density. The

susceptibility is defined through the two point correlation function as

χ = lim
k,ω→0

〈ρρ〉 = lim
k,ω→0

iσk2

ω + iDk2
=
σ

D
, (3.26)

where D is the diffusion constant and σ is the conductivity. The residue, iσk2, vanishes and

one recovers the well-known Einstein relation σ = Dχ. However, for hydrodynamic modes

appearing at second order phase transitions the order parameter susceptibility should di-

verge at the critical point. This order parameter susceptibility is given in our case by the

correlator of the boundary operator sourced by the scalar field. At the critical temperature

it is

χŌiOi
= lim

k,ω→0
〈ŌiOi〉 = lim

k,ω→0

Ri(k, Tc)

ω − ωH(k, Tc)
→ ∞ (3.27)

since ωH(0, Tc) = 0 while the residue remains finite. This result allows us to identify the

lowest scalar quasinormal mode in the unbroken phase with the Goldstone boson appearing

at the critical point.

In the model under consideration one can also compute the gauge field fluctuations

in the normal phase. Nevertheless, as the model does not include the backreaction of

the metric, the computation is not sensitive to temperature anymore. This can be seen

from the equations of motion (3.2) of the gauge fluctuations, that do not depend on the

background solutions thus are independent of the temperature. Hence we recover the

results for the quasinormal modes of vector field perturbations in the AdS4 black hole

background computed by [34]. For our purposes the most important fact is the presence

– 13 –
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of a hydrodynamic mode corresponding to diffusion. For small momenta that mode has

dispersion relation ω = −iDk2 with D = 1 (which is D = 3/(4πT ) in physical units). In

order to study the behavior of the diffusion pole in the unbroken phase as a function of the

temperature one has to consider the backreacted model described in [38].

4 Quasinormal frequencies in the broken phase

In this section we will apply our determinant method for finding quasinormal modes of a

coupled system of field equations. With this technique we follow the model analyzed in the

previous section into its broken phase. Figure 3 schematically summarizes our analysis.

The two formerly separate sets of scalar (grey dots) and longitudinal vector poles (black

dots) present in the unbroken phase where the scalars and vectors decouple, are now unified

into one inseparable pole structure in the coupled system. This is in analogy to a coupled

system of two harmonic oscillators in which it makes no sense to ask for the eigenfrequencies

of the single oscillators. One could of course try to diagonalize the system of differential

equations, in our case however this looks rather complicated and we prefer to work directly

with the coupled system and with the gauge fields instead of gauge invariant variables. The

lowest modes (see figure 3) are two hydrodynamic second sound modes originating from

the two lowest scalar quasinormal modes in the unbroken phase. In addition we will find

a non-hydrodynamic pseudodiffusion mode staying on the imaginary axis in the range of

momenta we consider. This mode can be thought of as the prolongation of the diffusion

mode into the unbroken phase.

4.1 Application of the determinant method

The equations of motion in the broken phase couple the scalar fluctuations η, σ to the

longitudinal vector components at, ax

0 = fη′′ +

(

f ′ +
2f

ρ

)

η′ +

(

φ2

f
+

2

L2
+
ω2

f
− k2

ρ2

)

η − 2iωφ

f
σ − iωψ

f
at −

ikψ

r2
ax ,

(4.1)

0 = fσ′′ +

(

f ′ +
2f

ρ

)

σ′ +

(

φ2

f
+

2

L2
+
ω2

f
− k2

ρ2

)

σ +
2φψ

f
at +

2iωφ

f
η , (4.2)

0 = fat
′′ +

2f

ρ
at

′ −
(

k2

ρ2
+ 2ψ2

)

at −
ωk

ρ2
ax − 2iωψ η − 4ψφσ , (4.3)

0 = fax
′′ + f ′ax

′ +

(

ω2

f
− 2ψ2

)

ax +
ωk

f
at + 2ikψ η . (4.4)

This system of four coupled equations is subject to the constraint

ω

f
at

′ +
k

ρ2
ax

′ = 2i
(

ψ′ η − ψ η′
)

, (4.5)

where the left hand side known from the unbroken phase is amended by the condensate

terms on the right. Note that the real part σ of the scalar fluctuation is not involved in

the constraint.
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Figure 3. Schematic plot of the poles in the coupled system, i.e. in the broken phase at small

finite momentum right below Tc. These poles are present in each retarded correlation function

for the coupled fields η, σ, At, Ax, while their residues might vanish for specific fields. Close to

the origin we find the (pseudo)diffusion mode and two hydrodynamic second sound modes. In

addition two sets of higher (non-hydrodynamic) quasinormal modes are shown. In the unbroken

phase these poles originate from the scalar (grey dots). We also expect a tower of purely imaginary

poles stemming from the longitudinal vector channel (black dots). The grey area indicates where

our present numerical methods break down. In this paper we will be concerned primarily with the

hydrodynamic modes and will touch upon the higher quasinormal modes only briefly.

The constraint can be interpreted as the Ward identity of current conservation in the

presence of the condensate. We expand the gauge fields near the boundary and note that

a′0 = 〈n〉/ρ2 and a′x = −〈jx〉/ρ2, where jx is the x-component of the current. Expanding

also the r.h.s. and comparing the leading orders in ρ we find

∂µ〈jµ〉 = 2〈Oi〉ηi0 (4.6)

where ηi0 is the source for the insertion of the operator Oi. This equation is to be understood

as the local Ward identity encoding current conservation in the presence of the condensate

〈Oi〉. It follows for example that the two point function of the divergence of the current

with the operator Oi is zero only up to a contact term 〈∂µjµ(x)Oi(y)〉 = 〈Oi〉δ(x− y).

The gauge field component ay being transverse to the momentum decouples from the

above system and assumes the form

0 = f ay
′′ + f ′ay

′ +

(

ω2

f
− k2

ρ2
− 2ψ2

)

ay . (4.7)

Since we do not expect any hydrodynamic modes in the transverse vector channel we will

not study this equation further.
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Applying the indicial procedure to the system (4.1) to find the exponents for the

singular and the coefficients for the regular parts of the fields, we obtain the following

behavior at the horizon

η = (ρ− 1)ζ
(

η(0) + η(1)(ρ− 1) + . . .
)

, (4.8)

σ = (ρ− 1)ζ
(

σ(0) + σ(1)(ρ− 1) + . . .
)

, (4.9)

at = (ρ− 1)ζ+1
(

a
(0)
t + a

(1)
t (ρ− 1) + . . .

)

, (4.10)

ax = (ρ− 1)ζ
(

a
(0)
t + a

(1)
t (ρ− 1) + . . .

)

, (4.11)

with the exponent ζ = −iω/3 obeying the incoming wave boundary condition.

Due to the constraint we can choose only three of the four parameters at the horizon.

Using the constraint and without loss of generality we can eliminate the time component a0
t

and parametrize the solutions by (η(0), σ(0), a
(0)
x ). We choose three linearly independent

combinations I, II, III. A fourth solution can be found from the gauge transformations

ηIV = iλψ , σIV = 0 , aIVt = λω , aIVx = −λk . (4.12)

with λ being an arbitrary constant with respect to ρ. It is not an algebraic solution to the

equations of motion since η has non trivial dependence on the bulk variable ρ. The gauge

solution solves the equations (4.1) not exactly but only up to terms proportional to the

background equations (2.4).

Our goal is to find the poles in the retarded correlation functions of the four fields

appearing in the coupled system of equations of motion (4.1). A convenient way of imposing

the appropriate boundary conditions is given by redefining the scalar fields as

η̃(ρ) = ρη(ρ) , σ̃(ρ) = ρσ(ρ) . (4.13)

Then the most general solution for each field ϕi ∈ {η̃, σ̃, at, ax} including gauge degrees

of freedom can be written

ϕi = α1ϕi
I + α2ϕi

II + α3ϕi
III + α4ϕi

IV . (4.14)

In the theory with the dimension two operator the sources for the various gauge in-

variant operators are given by ϕi(Λ). We are interested in the quasinormal modes of the

system (4.1) and as we have argued in the previous section these are the special values of the

frequency where the determinant spanned by the values ϕI,II,III,IVi vanishes. Expanding

this determinant we get

0 =
1

λ
det











ϕη
I ϕη

II ϕη
III ϕη

IV

ϕσ
I ϕσ

II ϕσ
III ϕσ

IV

ϕIt ϕIIt ϕIIIt ϕIVt
ϕIx ϕIIx ϕIIIx ϕIVx











(4.15)

= iϕIVη det







ϕσ
I ϕσ

II ϕσ
III

ϕIt ϕIIt ϕIIIt

ϕIx ϕIIx ϕIIIx






+ω det







ϕη
I ϕη

II ϕη
III

ϕσ
I ϕσ

II ϕσ
III

ϕIx ϕIIx ϕIIIx






+k det







ϕη
I ϕη

II ϕη
III

ϕσ
I ϕσ

II ϕσ
III

ϕIt ϕIIt ϕIIIt






,
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which needs to be evaluated at the cutoff ρ = Λ. The first term in (4.15) vanishes at the

cutoff since ϕIV4 = Λψ = 0 is just the condition that the operator O2 is not sourced by

the background.

We first find three linearly independent numerical solutions and then solve con-

dition (4.15) numerically. Explicit checks confirm that the choice of a solution basis

ϕI,II,III,IV is completely arbitrary and does not change the results. Note also that in

our present case all the remaining determinants can not be factorized. But if the momen-

tum is set to zero, the only remaining term is the one with ω and the determinant factorizes

into a scalar part and a vector part since the system of equations decouples.

In the theory with the dimension one operator the sources are given by −Λ2η̃ and

−Λ2σ̃ for the scalar fields. Let us call ϕ1 = −ρ2η̃′ and ϕ2 = −ρ2σ̃′ in this case. The

determinant has therefore the same form and again the first term vanishes due to the

absence of sources for O1 in the background solution. The quasinormal modes can again

be found by integrating three arbitrary solutions with infalling boundary conditions from

the horizon to the cutoff and finding numerically the zeroes of the determinant (4.15).

4.2 Hydrodynamic and Goldstone modes

Sound mode The scalar modes originally destabilizing the unbroken phase turn into

Goldstone modes at Tc instead of becoming tachyonic. Below Tc they evolve into the

two second sound modes. Figure 4 shows their movement when momentum is changed at

different temperatures. Note that we focus on the positive real frequency axis because of the

mirror symmetry sketched in figure 3. From the dispersion relation at small frequencies

and long wavelengths we extract the speed of second sound vs and the second sound

attenuation Γs using the hydrodynamic equation

ω = vsk − iΓsk
2 . (4.16)

It turns out that the hydrodynamic regime, i.e. that range of momenta in which the

dispersion relation is well approximated by (4.16), is very narrow for temperatures just

below the critical one since the speed of sound vanishes at Tc. Fits to the hydrodynamic

form at a high temperature T ≈ 0.9999Tc are plotted in figure 5 for the O2-theory, the

results for the O1 theory are qualitatively similar.

The speed of second sound is shown in figure 6. We have a good numerical agreement

with the thermodynamic value of the second sound velocity given in [22]. This nicely

confirms validity of our method. In particular, within our numerical precision we find that

the value of the square of the speed of sound tends to v2
s ≈ 1/3 in the O1 theory and

to v2
s ≈ 1/2 in the O2 theory.3 However, the numerics becomes rather unstable for low

temperatures, especially for the O1 theory. Near but below the critical temperature we

3In [23] it was argued that conformal symmetry implies v2

s = 1/2 at zero temperature. Due to the

divergence in the order parameter for the O1 theory conformal symmetry could be broken and allow thus

for a different value.
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Figure 4. Movement of the positive frequency sound pole away from ω = 0 with increasing

spatial momentum. Distinct curves correspond to temperatures below the phase transition T/Tc =

0.999 (black), 0.97 (pink), 0.91 (red), 0.71 (green), 0.52 (blue), 0.26 (light blue). Dots on one curve

are separated by ∆k = 0.05. All curves start at k = 0.05 and end at k = 1.00.
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Figure 5. Fits of the real and imaginary part of the hydrodynamic modes in the broken phase to

the lowest order approximation ω = vsk − iΓsk
2. The left figure shows the real part and the right

one the imaginary part. The thick lines are the numerical results and the thin lines are the linear

and quadratic fits. The fit is done for a temperature just below the critical one where the range of

the approximation is rather small.

find

v2
s ≈ 1.9

(

1 − T

Tc

)

O1 − Theory , (4.17)

v2
s ≈ 2.8

(

1 − T

Tc

)

O2 − Theory . (4.18)

Moreover, as a benefit of our effort considering the fluctuations, we are also able to

extract non-thermodynamic quantities in this channel. Specifically we examine the atten-

uation of the second sound mode as shown in figure 7. The curve shows how attenuation
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Figure 6. The plots show the squares of the speed of sound as extracted from the location of the

lowest quasinormal mode in the broken phase. The left figure is for the O1 theory and the right one

for the O2 theory. We also indicate the linear behavior close to Tc. As can be seen the numerics

for the O1 theory becomes somewhat unstable for low temperatures.
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Figure 7. The plots show the attenuation constants of second sound as extracted from the location

of the lowest quasinormal mode in the broken phase. The left figure is for the O1 theory and the

right one for the O2 theory. Again it can be noticed that the O1 theory is numerically more

challenging at low temperatures.

smoothly asymptotes to zero as the superfluid becomes more and more ideal at low tem-

peratures. This effect is however much stronger in the O2 theory. Near Tc the attenuation

is growing. Within our numerical precision it seems however that the attenuation constant

is taking a finite value at the critical temperature. Numerically we find

Γs = 1.87Tc at T = 0.9991Tc O1 − Theory , (4.19)

Γs = 1.48Tc at T = 0.9998Tc O2 − Theory . (4.20)

A similar behavior has been observed in [39], where the attenuation of the normal sound

mode asymptotes to a finite value near a phase transition.

(Pseudo) diffusion mode The vector diffusion mode from the unbroken phase turns

into a (pseudo) diffusion mode below Tc.
4 For not too low temperatures and not too large

4An analytical result obtained for second sound in a non-abelian model [24] also shows the appearance

of a pseudo diffusion mode with a gap that vanishes as the condensate goes to zero.
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Figure 8. The plots show the gap of the pseudo diffusion mode as a function of reduced tempera-

ture. On the left the O1 theory and on the right the O2 theory.
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Figure 9. The plots show the dispersion relations for the pseudo diffusion mode at different tem-

peratures and the diffusion dispersion relation with D = 3/(4πT ) (note that even in the unbroken

phase the latter approximates the diffusive quasinormal mode only for small momenta). On the

left we have the O1 theory at temperatures T = 0.999Tc (black), T = 0.97Tc (red) and T = 0.91Tc

(green). On the right the same for the O2 theory at temperatures T = 0.999Tc (black), T = 0.97Tc

(red) and T = 0.87Tc (green).

momenta the dispersion relation for this mode is well approximated by

ω = −iDk2 − iγ(T ) , (4.21)

with a gap γ ∈ R in imaginary frequency direction. Thus the pole is shifted from its

unbroken phase position such that it does not approach zero at vanishing momentum any

more, i.e. it is not anymore a hydrodynamic mode.

In figure 8 we have plotted the gap γ as a function of the reduced temperature and we

can see that it vanishes linearly near Tc.

γ ≈ 15.4Tc

(

1 − T

Tc

)

O1 − Theory , (4.22)

γ ≈ 8.1Tc

(

1 − T

Tc

)

O2 − Theory . (4.23)

Figure 9 shows the dispersion relation for the diffusion pole at different temperatures.

The offset at k = 0 is the gap size γ depending linearly on T only near Tc. This implies
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that the relation (4.21) asymptotes to the ordinary diffusion equation near the critical

temperature. As expected the highest temperature curve T = 0.999Tc (black) matches

the hydrodynamic approximation (thin line) very well at small momenta. That agreement

becomes worse around k ∼ 0.25. Also as the condensate grows below Tc the behavior of

this (pseudo) diffusion mode becomes less hydrodynamic.

4.3 Higher quasinormal modes

In addition to the hydrodynamic sound modes and the pseudo diffusion mode there are

higher quasinormal modes. They are not the main focus of this paper and we have not

studied them in detail. We have however traced the prolongation of the second and third

quasinormal modes in the scalar sector from the unbroken phase into the broken phase.

The former scalar modes evolve continuously into higher modes of the coupled system

through the phase transition as seen from the two kinked dashed (unbroken phase) and solid

(broken phase) lines in figure 10. The kink indicates that the poles move continuously but

change direction at the critical temperature. We show only the plot for the theory with the

dimension two operator, similar results hold for the O1 theory. At the critical temperature

the locations of the quasinormal frequency calculated with the Frobenius method in the

unbroken phase and by the method of finding the zeroes of the determinant spanned by

the solutions match with impressively high precision. We might take this as a highly non

trivial test of the accuracy of the numerical integration method.

We expect that all quasinormal frequencies are shifted continuously in the complex

frequency plane across the phase transition. This means that there are no jumps in any of

the dispersion relations. There is simply an infinite set of poles corresponding to the degrees

of freedom of the system which are continuously shifted when parameters are changed.

Our numerical invesigations also reveal poles developing an increasing real part with

decreasing temperature which most likely originate from the longitudinal vector modes in

the unbroken phase. Note that we have not shown these modes for simplicity.

The two higher modes shown in figure 10 move parallel to the real axis and to each

other with decreasing temperature.5 At low temperatures their real parts are almost the

same. This is also true for the longitudinal vectors as far as we can tell within our numerical

uncertainties. We suspect that this alignment of higher poles has to do with the appearence

of the conductivity gap showing up at low temperatures [5].

5 Summary and discussion

We have studied the hydrodynamics of a holographic model of a superfluid. The model is

an Abelian gauge field model with a charged scalar field in a four dimensional AdS black

hole background.

As is well known by now the holographic dictionary allows to interpret the quasinormal

frequencies as the poles of the retarded Green functions of the dual field theory. By

calculating the low lying quasinormal frequencies numerically in the broken and unbroken

5Note that this behavior is very different from the behavior usually found in five-dimensional holographic

setups when temperature is decreased [40–42].
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Figure 10. Movement of the higher poles in the complex frequency plane at vanishing momentum

k = 0. Scalar modes 2 (blue) and 3 (green) in the unbroken phase (dashed) evolve continuously into

the higher poles of the broken phase (solid). The right end points are evaluated for T/Tc = 0.25.

phases we were able to identify the hydrodynamics. We found that at high temperatures,

T > Tc there is only one hydrodynamic mode representing the diffusion of the conserved

U(1) charge. As one lowers the temperature reaching the critical temperature Tc two of

the quasinormal frequencies of the charged scalar field approach the origin of the complex

frequency plane. Precisely at the critical temperature at the onset of the phase transition

these modes become massless, giving rise to new hydrodynamic variables. We also have

calculated the residue of these modes and found that it stays finite at T = Tc resulting in

a divergence of the order parameter susceptibility, as expected.

Below the critical temperature these modes stay massless and show a dispersion relation

with a linear real part and a quadratic imaginary one, allowing an interpretation as the

modes of second sound in the superfluid. On the other hand the diffusion mode starts to

develop a gap and stops to be hydrodynamic. The counting is therefore one hydrodynamic

mode at high temperatures, three at the critical temperature and two at low temperatures.

In the low temperature phase we were able to calculate the speed of sound as well as

its attenuation constant as a function of temperature. Also the gap in the pseudo diffusion

mode has been determined.

We have also been able to follow some of the higher quasinormal modes through the

phase transition and found that they evolve continuously albeit non-smoothly with tem-

perature in the complex frequency plane, showing a sharp kink at the critical temperature.

On a technical side we have developed a method to determine the quasinormal frequen-

cies and the holographic Green functions for systems of coupled differential equations and

without using gauge invariant variables. The quasinormal frequencies correspond simply to
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the zeroes of the determinant spanned by a maximal set of linearly independent solutions.

We have furthermore seen that the poles of the Green functions stemming from bulk gauge

fields are gauge invariant as expected.

There are now several interesting questions that should be investigated in the future.

The most obvious one is to apply the methods developed here to the model where the

backreaction of the matter and gauge field onto the metric are properly taken into account.

Due to the presence of the metric fluctuations the hydrodynamics of such a model is

certainly much richer. In addition to the diffusion and second sound modes found here

one expects also shear and sound modes stemming from bulk metric fluctuations. The

corresponding system of differential equations promises to be rather involved. However

there should be no principal obstacle to apply our methods also in these cases. Such an

investigation is currently underway [43].

Another interesting direction of research should be to reinterpret the results obtained

here and analogous ones for related models with different scalar mass and living in different

dimensions from the point of view of dynamical critical phenomena [44]. We have seen

already that the speed of sound scales with exponent one half, whereas the gap in the

pseudo diffusion mode scales with exponent one. The situation for the sound attenuation

is unfortunately less clear. As far as our numerics indicates the sound attenuation reaches

a finite value at T = Tc. An extensive study of related models possibly with enhanced

numerical efforts might give new insights here.

Of course an effort should also be undertaken to extend the results at hand to models

of p-wave superconductors [45]. For infinitesimal condensates and analytic study of the

hydrodynamics has already been done in [24]. It might be of interest to supplement these

analytical result with a numeric study that allows to go further away from the phase

transition point deep into the broken phases. Another very interesting class of holographic

p-wave superconductors are the ones realized on D7 brane embeddings [8, 13, 21]. Due to

the presence of fundamental matter these should be especially interesting to study.

We hope to come back to all or at least some of these and other questions in

future publications.
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